Precise estimates for the subelliptic heat kernel on H-type groups

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Precise Estimates for the Subelliptic Heat Kernel on H-type Groups

We establish precise upper and lower bounds for the subelliptic heat kernel on nilpotent Lie groups G of H-type. Specifically, we show that there exist positive constants C1, C2 and a polynomial correction function Qt on G such that C1Qte − d2 4t ≤ pt ≤ C2Qte d2 4t where pt is the heat kernel, and d the Carnot-Carathéodory distance on G. We also obtain similar bounds on the norm of its subellip...

متن کامل

Gradient Estimates for the Subelliptic Heat Kernel on H-type Groups

We prove the following gradient inequality for the subelliptic heat kernel on nilpotent Lie groups G of H-type: |∇Ptf | ≤ KPt(|∇f |) where Pt is the heat semigroup corresponding to the sublaplacian on G, ∇ is the subelliptic gradient, and K is a constant. This extends a result of H.-Q. Li [10] for the Heisenberg group. The proof is based on pointwise heat kernel estimates, and follows an approa...

متن کامل

The Heat Kernel for H-type Groups

Theorem 1 gives an explicit formula for the heat kernel on an H -type group. Folland (2] has shown that for stratified nilpotent Lie groups the heat semigroup is a semigroup of kernel operators on LP, 1 5 p < oo and on Co. Cygan (1] has obtained formulas for heat kernels for any two step nilpotent simply connected Lie group. Cygan found the heat kernel for a free simply connected two step nilpo...

متن کامل

Optimal Heat Kernel Estimates

Sharp smoothing estimates are proven for magnetic Schrr odinger semigroups in two dimensions under the assumption that the magnetic eld is bounded below by some positive constant B 0. As a consequence the L 1 norm of the associated integral kernel is bounded by the L 1 norm of the Mehler kernel of the Schrr odinger semigroup with the constant magnetic eld B 0 .

متن کامل

Heat kernel estimates for the fractional Laplacian

Explicit sharp estimates for the Green function of the Laplacian in C domains were completed in 1986 by Zhao [42]. Sharp estimates of the Green function of Lipschitz domains were given in 2000 by Bogdan [6]. Explicit qualitatively sharp estimates for the classical heat kernel in C domains were established in 2002 by Zhang [41]. Qualitatively sharp heat kernel estimates in Lipschitz domains were...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal de Mathématiques Pures et Appliquées

سال: 2009

ISSN: 0021-7824

DOI: 10.1016/j.matpur.2009.04.011